Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Abstract Effects of electronic to nuclear energy losses (Se/Sn) ratio on damage evolution in defective KTaO3have been investigated by irradiating pre-damaged single crystal KTaO3with intermediate energy O ions (6 MeV, 8 MeV and 12 MeV) at 300 K. By exploring these processes in pre-damaged KTaO3containing a fractional disorder level of 0.35, the results demonstrate the occurrence of a precursory stage of damage production before the onset of damage annealing process in defective KTaO3that decreases with O ion energy. The observed ionization-induced annealing process by ion channeling analysis has been further mirrored by high resolution transmission electron microscopy analysis. In addition, the reduction of disorder level is accompanied by the broadening of the disorder profiles to greater depth with increasing ion fluence, and enhanced migration is observed with decreasing O ion energy. SinceSe(∼3.0 keV nm−1) is nearly constant for all 3 ion energies across the pre-damaged depth, the difference in behavior is due to the so-called ‘velocity effect’: the lower ion velocity below the Bragg peak yields a confined spread of the electron cascade and hence an increased energy deposition density. The inelastic thermal spike calculation has further confirmed the existence of a velocity effect, not previously reported in KTaO3or very scarcely reported in other materials for which the existence of ionization-induced annealing has been reported. In other words, understanding of ionization-induced annealing has been advanced by pointing out that ion velocity effect governs the healing of pre-existing defects, which may have significant implication for the creation of new functionalities in KTaO3through atomic-level control of microstructural modifications, but may not be limited to KTaO3.more » « less
-
Systematic investigations of electronic energy loss (Se) effects on pre-existing defects in crystalline silicon (Si) are crucial to provide reliance on the use of ionizing irradiation to anneal pre-existing defects, leading to successful implementation of this technology in the fabrication of Si-based devices. In this regard, the Se effects on nonequilibrium defect evolution in pre-damaged Si single crystals at 300 K has been investigated using intermediate-energy ions (12 MeV O and Si ions) that interact with the pre-damaged surface layers of Si mainly by ionization, except at the end of their range where the nuclear energy loss (Sn) is no longer negligible. Under these irradiation conditions, experimental results and molecular dynamics simulations have revealed that pre-existing disorder in Si can be almost fully annealed by subsequent irradiation with intermediate-energy incident ions with Se values as low as 1.5 - 3.0 keV/nm. Selective annealing of pre-existing defect levels in Si at room temperature can be considered as an effective strategy to mediate the transient enhanced diffusion of dopants in Si. This approach is more desirable than the regular thermal annealing, which is not compatible with the processing requirements that fall below the typical thermal budget.more » « less
An official website of the United States government
